Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

نویسندگان

  • Saeid Hamzeh
  • Abd Ali Naseri
  • Seyed Kazem Alavipanah
  • B. Mojaradi
  • Harm M. Bartholomeus
  • Jan G. P. W. Clevers
  • M. Behzad
چکیده

The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Remote Sensing in Characterizing Soil Salinity Severity using SVM Technique - A Case Study of Alluvial Plains

Hyperspectral remote sensing is widely used for analyzing and estimating the severity of soil salinity in arid and semi-arid regions, throughout the world. The present study is an attempt to map the various soil salinity severity classes using different hyperspectral indices generated using EO-1 Hyperion data and Support Vector Machine (SVM) method, in the Mathura region of Indo-Gangetic plain ...

متن کامل

Rethinking Chlorophyll Responses to Stress: Fluorescence and Reflectance Remote Sensing in a Coastal Environment

Chlorophyll fluorescence and hyperspectral reflectance were used to evaluate physiological responses to two common stressors in coastal environments. Chlorophyll content is one indicator of drought and salinity vegetation stress because of its direct role in the photosynthetic process and electron transport. Recent advances in fluorescence spectroscopy have led to the development of numerous re...

متن کامل

Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were c...

متن کامل

High density biomass estimation: Testing the utility of Vegetation Indices and the Random Forest Regression algorithm

Accurate estimates of wetland above ground biomass (AGB) have increasingly been identified as a critical component for an efficient wetland monitoring and management system. Multispectral remote sensing based indices have proven inadequate in estimating biomass especially at high canopy density. In this study we investigated the use of vegetation indices derived from field hyperspectral data to...

متن کامل

Hyperspectral Manipulation for the Water Stress Evaluation of Plants

There are high demands for water content estimation in vegetation, e.g. water-stress control for sweet crops, forest disease monitoring and drought monitoring. In this paper, normalized difference-based and ratio-based water stress indices by means of hyperspectral information from NIR to SWIR, spectral ranges of InGaAs sensor, are introduced to facilitate realizing simple measurement system at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2013